Докажите, что произведение нескольких (более одного) последовательных натуральных чисел не может равняться 10!*8=29030400.
![]() ![]() ![]() ![]() ![]() ![]() |
Докажите, что произведение нескольких (более одного) последовательных натуральных чисел не может равняться 10!*8=29030400.
![]() ![]() ![]() ![]() ![]() ![]() |
02/04/2025 - 12:17. Автор: Анонимно Дождливая Аня написала в своей тетради 40 натуральных чисел, использовав для этого ровно 57 цифр. Я « пацталом» от этого тупого математика)))) А как при натуральном счёте может быть « не ровно 57»???? = "Математик" тупой не поэтому. А потому, что постит свои дебильные задачки на анекдотной ленте.
![]() ![]() ![]() ![]() ![]() ![]() |
Три задачки для поднятия настроения (« три» в данном случае не является глаголом), все их можно решить, не пиша компьютерной программы и не пользуясь катькулятором: 1: Найдите наименьшее натуральное число, в котором участвуют только цифры 6 и 7 в равном количестве, и кратное 6 и 7. 2: Существует ли наибольшее целое число, любые 3 последовательные цифры которого образуют натуральное число, кратное 11? 3: Какое наименьшее количество множителей требуется вычеркнуть из числа произведения всех натуральных чисел от 1 до 68 (включительно), чтобы произведение оставшихся множителей оканчивалось на 68? Бонус, задача-шутка: Сколько у кошек усов?
![]() ![]() ![]() ![]() ![]() ![]() |
Две задачи: одна попроще, другая потруднее. И катринки, соответственно, тоже две. Задача попроще: Настины разности. Настя хочет расставить числа от 1 до 16 по кругу таким образом, так, чтобы разность любых двух соседних чисел была нечётным простым числом. Какое наименьшее количество различных разностей может получиться у Насти? (Под разностью подразумевается результат вычитания меньшего числа из большего.) Мне удалось решить эту задачу, не пиша компьютерной программы и не пользуясь катькулятором. И, разумеется, не джипитя. Сделайте это и вы! (Позже оказалось, что СhаtGРТ эту задачу решить вообще не смог. Т*п@я машина!) == Задача потруднее: Супнаборы. Набор последовательных натуральных чисел (не менее двух чисел) назовём супнабором, если сумма чисел набора является точной степенью (выше первой) наименьшего из чисел набора. Вот два примера супнаборов: набор 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, сумма которого равна кубу числа 6, а также набор 12, 13, 14, 15, 16, 17, 18, 19, 20, где сумма равна квадрату числа 12. Настя утверждает, что существует хотя бы три супнабора. Права ли Настя? Даша утверждает, что существует счётное множество супнаборов. Права ли Даша?
![]() ![]() ![]() ![]() ![]() ![]() |
Решил проверить, как у дочки с арифметикой. Даю ей задание: - Найдите наименьшее целое число, которое при делении на 17 даёт частное, равное сумме двух последовательных натуральных чисел, и остаток, равный произведению этих же чисел. Дочка задумалась на несколько секунд, а потом говорит: - Так это же как раз возраст бабушки получается! А я ей: - Кому бабушка, а кому тёща!
![]() ![]() ![]() ![]() ![]() ![]() |
Три недели, три задачи: Исследуем мир чисел и делителей Задача 1: Таня расставила числа 1, 2, 3, 4, 5, 6, 7, 8 в вершинах куба таким образом, что сумма чисел на каждой грани оказалась натуральным числом, имеющим ровно n различных натуральных делителей. Найдите все возможные значения n и докажите, что других нет. #количество_делителей_числа #Таня_решает_задачи #конструкции #примеры_и_контрпримеры #математические_конструкции Задача 2: Когда у Бабы Яги в день её рождения спросили, сколько ей исполнилось лет, она ответила, что её возраст в месяцах записывается только цифрами 0, 1 и 3 (каждая из этих цифр используется хотя бы единожды), причём такое случилось с ней впервые в жизни. Сколько лет исполнилось в тот день Бабе Яге? #делимость #десятичная_запись_числа #делимость_на_12 #задачи_о_возрасте #календарь_и_возраст Задача 3: Назовём натуральное число таёжным, если оно, будучи умноженным на количество своих делителей, даёт факториал натурального числа. Вот первые 7 таёжных чисел: 1, 3, 6, 20, 60, 37800, 43200. а) Верно ли, что единственными таёжными числами, не оканчивающимися нулём, являются 1, 3 и 6? б) Верно ли, что таёжных чисел бесконечно много? #количество_делителей_числа #произведения_и_факториалы #последняя_цифра_числа #их_нет_в_оеis #таёжные_числа
![]() ![]() ![]() ![]() ![]() ![]() |
Две задачи для развития мозга: Задача1: На Ленинградской олимпиаде 1988 года предлагалась следующая задача: Найдите 100-значное число без нулевых цифр, которое делится на сумму своих цифр. Тетяна сумела решить более сильную задачу, а именно найти 100-значное число, в десятичной записи которого есть только цифры 8 и 9, кратное сумме своих цифр. Причём Таня сделала это не пиша компьютерной программы и не пользуясь катькулятором. Сделайте это и вы! #десятичная_запись_числа #8_класс #ленинградские_олимпиады #1988_год #признаки_делимости #число_из_восьмёрок_и_девяток Задача 2: Таня сумела найти два последовательных натуральных числа, каждое из которых равно сумме 5-ых степеней своих цифр, не пиша компьютерной программы и не пользуясь катькулятором. Попробуйте и вы! (Число 0 натуральным не является.) #десятичная_запись_числа #пятая_степень #конструкции #примеры_и_контрпримеры #арифметика #теория_чисел #занимательная_теория_чисел
![]() ![]() ![]() ![]() ![]() ![]() |
1) Олимпиада 2) Докажите, что 3) Натуральное число 4) Разрежьте 5) Угол 6) Муниципальный 7) Клетчатой 8) 1 курс 9) Фальшивая 10) Ответ N 11) Факториал 12) Разыграли турнир 13) N последовательных натуральных чисел 14) ОЕIS 15) Матбой 16) Сумма цифр 17) ПроблемСру 18) Простое число 19) Не меньшее 17 20) Не меньшее 19 21) Уральский турнир 22) Парабола 23) В какое наибольшее число цветов 24) Муниципального этапа 25) Абака 26) Треугольник 27) Выпуклый 28) Ненулевые 29) Найти предел 30) Клетки 31) Трёхчлен 32) (возможно, по нескольку раз) 33) Математический кружок 34) Первообразные функции 35) Можно ли в таблице 36) Можно лифт облиться? 37) Разнобой 38) Неотрицательные действительные числа 39) Второй этап 40) Натуральных делителей 41) В клетках доски 42) Школьного этапа 43) Математическая карусель 44) Математический аукцион 45) 1 тур 46) Произвольный параллелограмм 47) Олимпиада; докажите, что; гмндч гмнсч 48) Математическое многоборье 49) КМШ 50) Квант для младших школьников 51) Неравнобедренного 52) Всесибирская 53) Каждая задача оценивается в 54) Математичних бо в 55) Найдётся квадрат 56) Жабки 57) Всеросс 58) Написала на доске 59) Удовлетворяет условию задачи 60) Регата 61) Можно ли расставить? 62) Сколько решений имеет ребус? 63) 2013 шариков 64) 2015 шариков 65) N шариков 66) По очереди начинает 67) Региональная 68) Ответ объясните 69) Наибольшее шестизначное число 70) На доске написаны 71) Find thе smаllеst роsitivе intеgеr 72) Математичн ол мп ади в Ки в Математичн ол мп ади в Ки в 73) Полуфинал 74) sitе:оlimрiаdа. ru 75) Любых трёх 76) Математический серпантин 77) Решения задач первого дня 78) Ненулевых
![]() ![]() ![]() ![]() ![]() ![]() |