Анекдот N 1247996

На какое натуральное число нужно умножить 2025, чтобы у полученного числа было ровно 28 натуральных делителей (включая единицу и само число)? (Найдите все возможные ответы и докажите, что других ответов нет.) =. Ответ: 45. Доказательство: мамой клянусь.

число докажите ответы возможные других найдите ответов

Источник: sporu.net от 2025-6-12

число докажите → Результатов: 8


1.

Сорок чисел Дождливой Ани. Дождливая Аня решила найти натуральное число, которое делится на количество своих делителей, причём любое число, получаемое из него отбрасыванием одной или нескольких последних цифр, обладает тем же свойством. К своему удивлению, Аня нашла не одно, а целых сорок таких чисел: 1, 2, 8, 9, 12, 18, 24, 80, 84, 88, 96, 128, 180, 184, 240, 248, 804, 808, 880, 882, 1284, 1800, 1840, 2480, 2488, 8080, 8824, 18000, 18008, 24804, 24880, 80802, 88240, 180000, 180008, 180080, 180088, 1800080, 1800804, 1800880. Докажите, что Дождливая Аня нашла все такие числа.

3.

Две задачки на ночь, 15122024: Задача 1: Настя написала на карточках все натуральные числа от 2024 до некоторого числа включительно и выложила эти карточки в цепочку в произвольном порядке. Докажите, что полученное многозначное число не является степенью семёрки (с натуральным показателем). Задача 2: Даша: « Настя, ты представляешь? Я только что написала прогу, сумевшую найти наибольшее натуральное число, в котором все цифры различны, а произведение их факториалов точный квадрат! Это же гениально!» Настя: « Ого, Даша, это звучит впечатляюще! Но знаешь, мне кажется, ты переусердствовала. Такое легко можно сделать, не пиша компьютерной программы и не пользуясь катькулятором!» Повторите арифметический подвиг Насти!

4.

Настя написала на карточках все натуральные числа от 2024 до некоторого числа включительно и выложила эти карточки в целочку в произвольном порядке. Докажите, что полученное многозначное число не является степенью семeрки (с натуральным показателем). *****... В свою целочку выложила? Это важно.

5.

Несколько интересных задач. 1) Настя нарисовала прямоугольный параллелепипед, все стороны которого выражаются целыми числами, а объем численно равен его площади поверхности. Пришедшая к Насте в гости Даша заметила, что высота этого параллелепипеда равна произведению длины на ширину. Чему могут быть равны измерения этого параллелепипеда? Найдите все возможные варианты и докажите, что других нет. 2) х,у,z суть три натуральных числа. Известно, что число х(у+z) оканчивается на 4, число у+хz оканчивается на 5, а число z(х+у) оканчивается на 6. Какое наименьшее значение может принимать сумма х+у+z ? 3) Существуют ли 5 попарно различных дробей (не обязательно правильных!) таких, что произведение всех пяти дробей равно целому числу, но если выбрать некоторые из них (но не все), то их произведение не будет целым? 4) Для некоторых натуральных n существует точная n-ная степень, у которой сумма цифр равна n. Например, для n=1 сумма цифр числа 10^1 равна 1. Для n=5 сумма цифр числа 2^5 равна 5. А для n=70 сумма цифр числа 2^70 равна 70 (а само число равно 1180591620717411303424). Как найти хотя бы ещё одно такое n, помимо 1, 5 и 70? 5) Настя написала на доске 10 цифр, не обязательно различных. Даша поставила в двух местах между этими цифрами два знака умножения. А Таня написала результат получившегося примера. На какое наибольшее число нулей может оканчиваться написанное Таней число?

6.

Цифра 2 как ключ к квадратным тайнам! Докажите, что для каждого натурального числа n4 найдётся такое n-значное число, которое является квадратом натурального числа и при добавлении в его начало цифры 2 также получится квадрат некоторого натурального числа.

7.

Три недели, три задачи: Исследуем мир чисел и делителей Задача 1: Таня расставила числа 1, 2, 3, 4, 5, 6, 7, 8 в вершинах куба таким образом, что сумма чисел на каждой грани оказалась натуральным числом, имеющим ровно n различных натуральных делителей. Найдите все возможные значения n и докажите, что других нет. #количество_делителей_числа #Таня_решает_задачи #конструкции #примеры_и_контрпримеры #математические_конструкции Задача 2: Когда у Бабы Яги в день её рождения спросили, сколько ей исполнилось лет, она ответила, что её возраст в месяцах записывается только цифрами 0, 1 и 3 (каждая из этих цифр используется хотя бы единожды), причём такое случилось с ней впервые в жизни. Сколько лет исполнилось в тот день Бабе Яге? #делимость #десятичная_запись_числа #делимость_на_12 #задачи_о_возрасте #календарь_и_возраст Задача 3: Назовём натуральное число таёжным, если оно, будучи умноженным на количество своих делителей, даёт факториал натурального числа. Вот первые 7 таёжных чисел: 1, 3, 6, 20, 60, 37800, 43200. а) Верно ли, что единственными таёжными числами, не оканчивающимися нулём, являются 1, 3 и 6? б) Верно ли, что таёжных чисел бесконечно много? #количество_делителей_числа #произведения_и_факториалы #последняя_цифра_числа #их_нет_в_оеis #таёжные_числа

8.

1) Олимпиада 2) Докажите, что 3) Натуральное число 4) Разрежьте 5) Угол 6) Муниципальный 7) Клетчатой 8) 1 курс 9) Фальшивая 10) Ответ N 11) Факториал 12) Разыграли турнир 13) N последовательных натуральных чисел 14) ОЕIS 15) Матбой 16) Сумма цифр 17) ПроблемСру 18) Простое число 19) Не меньшее 17 20) Не меньшее 19 21) Уральский турнир 22) Парабола 23) В какое наибольшее число цветов 24) Муниципального этапа 25) Абака 26) Треугольник 27) Выпуклый 28) Ненулевые 29) Найти предел 30) Клетки 31) Трёхчлен 32) (возможно, по нескольку раз) 33) Математический кружок 34) Первообразные функции 35) Можно ли в таблице 36) Можно лифт облиться? 37) Разнобой 38) Неотрицательные действительные числа 39) Второй этап 40) Натуральных делителей 41) В клетках доски 42) Школьного этапа 43) Математическая карусель 44) Математический аукцион 45) 1 тур 46) Произвольный параллелограмм 47) Олимпиада; докажите, что; гмндч гмнсч 48) Математическое многоборье 49) КМШ 50) Квант для младших школьников 51) Неравнобедренного 52) Всесибирская 53) Каждая задача оценивается в 54) Математичних бо в 55) Найдётся квадрат 56) Жабки 57) Всеросс 58) Написала на доске 59) Удовлетворяет условию задачи 60) Регата 61) Можно ли расставить? 62) Сколько решений имеет ребус? 63) 2013 шариков 64) 2015 шариков 65) N шариков 66) По очереди начинает 67) Региональная 68) Ответ объясните 69) Наибольшее шестизначное число 70) На доске написаны 71) Find thе smаllеst роsitivе intеgеr 72) Математичн ол мп ади в Ки в Математичн ол мп ади в Ки в 73) Полуфинал 74) sitе:оlimрiаdа. ru 75) Любых трёх 76) Математический серпантин 77) Решения задач первого дня 78) Ненулевых